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Abstract

The Chernoff bound is a well-known tool for obtaining a high probability bound on the expectation of

a Bernoulli random variable in terms of its sample average. This bound is commonly used in statistical

learning theory to upper bound the generalisation risk of a hypothesis in terms of its empirical risk on

held-out data, for the case of a binary-valued loss function. However, the extension of this bound to the

case of random variables taking values in the unit interval is less well known in the community. In this

note we provide a proof of this extension for convenience and future reference.

1 Introduction

In statistical learning theory, one commonly considers a hypothesis space H and a probability measure D
over a space of datapoints Z. Let ℓ : H × Z → {0, 1} be a loss function taking values in {0, 1}; i.e., ℓ is a
binary loss. It is often of interest to bound the generalisation risk R(h) := EZ∼D[ℓ(h, Z)] of a hypothesis
h ∈ H. Such a bound can be established by computing the empirical mean of the loss on a dataset S ∼ DN

and using the following well-known theorem:

Theorem 1 (Chernoff bound for binary random variables; Langford, 2005, Corollary 3.7). Let X1, . . . , Xn

be i.i.d. random variables with Xi ∈ {0, 1} and E[Xi] = p. Let X := 1

n

∑n

i=1
Xi. Then, with probability at

least 1− δ,

p ≤ kl−1

(

X

∣

∣

∣

∣

1

n
log

1

δ

)

, (1)

where kl(q, p) := q log q

p
+ (1 − q) log 1−q

1−p
and kl−1(q | c) := sup {p ∈ [0, 1] : kl(q, p) ≤ c}.

By choosing Xi = ℓ(h, Zi) to be the loss of hypothesis h on the ith datapoint Zi in S, we immediately
obtain a high-probability upper bound on the generalisation risk, assuming that h does not depend on S.
(I.e., if h is the result of training algorithm which uses training data, then S must be held-out data.)

Theorem 1 is well-known and, as stated, requires Xi to be Bernoulli random variables. However, if the
loss ℓ takes values in the unit interval [0, 1] rather than in {0, 1}, i.e. ℓ : H×Z → [0, 1], then we require an
extension of theorem 1 to the case of Xi taking values in [0, 1]:

Theorem 2 (Chernoff bound for random variables in the unit interval). Let X1, . . . , Xn be i.i.d. random

variables with Xi ∈ [0, 1] and E[Xi] = p. Then, using the same notation as in theorem 1, with probability at

least 1− δ,

p ≤ kl−1

(

X

∣

∣

∣

∣

1

n
log

1

δ

)

. (2)

Although losses ℓ taking values in [0, 1] are commonly encountered, theorem 2 is somewhat less well
known than theorem 1. In this note, we provide a proof of theorem 2 for convenience and future reference.
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2 Two-Sided Chernoff Bound

We first recapitulate some well-known bounds based on Hoeffding’s extension of the Chernoff bound:

Lemma 2.1 (Hoeffding’s extension). Let X1, . . . , Xn be i.i.d. random variables with Xi ∈ [0, 1] and E[Xi] =
p. Then for any t ∈ [0, p],

Pr(X ≤ p− t) ≤ exp(−nkl(p− t, p)), (3)

and for any t ∈ [0, 1− p],

Pr(X ≥ p+ t) ≤ exp(−nkl(p+ t, p)). (4)

Proof. The proof is an application of the Chernoff method along with the observation that z 7→ eλz is convex,
which allows us to control the moment-generating function in terms of the moment-generating function of a
Bernoulli random variable. A detailed proof of the upper bound in eq. (3) is given in Theorem 5.1 of Mulzer
(2018). Equation (4) follows by applying the change of variables Xi → 1 −Xi to eq. (3) (see Corollary 4.1
in Mulzer (2018) for an identical change of variables argument in the binary case).

We can use lemma 2.1 to obtain a two-sided bound on the mean p.

Theorem 3 (Two-sided Chernoff bound for random variables in the unit interval). Let X1, . . . , Xn be

i.i.d. random variables with Xi ∈ [0, 1] and E[Xi] = p. Then, with probability at least 1− δ,

kl
(

X, p
)

≤
1

n
log

2

δ
. (5)

Proof. For c > 0, let kl(p, c) be the unique real number in (p, 1] such that kl(kl(p, c), p) = c. Similarly, let
kl(p, c) be the unique real number in [0, p) such that kl(kl(p, c), p) = c. Then, kl(X, p) ≤ c if and only if
kl(p, c) ≤ X ≤ kl(p, c). Hence,

Pr

(

kl(X, p) ≤
1

n
log

2

δ

)

= Pr

(

kl

(

p,
1

n
log

2

δ

)

≤ X ≤ kl

(

p,
1

n
log

2

δ

))

. (6)

But, from eq. (3), we have

Pr

(

kl

(

p,
1

n
log

2

δ

)

≤ X

)

≥ 1− exp

(

−nkl

(

kl

(

p,
1

n
log

2

δ

)

, p

))

= 1−
δ

2
. (7)

A symmetric argument shows that

Pr

(

X ≤ kl

(

p,
1

n
log

2

δ

))

≥ 1−
δ

2
. (8)

Using a union bound therefore implies that

Pr

(

kl(X, p) ≤
1

n
log

2

δ

)

≥ 1− δ, (9)

which proves the theorem.

This two-sided bound on the mean p nearly implies the desired one-sided bound from theorem 2:

kl
(

X
∣

∣ p
)

≤
1

n
log

2

δ
=⇒ p ≤ kl−1

(

X

∣

∣

∣

∣

1

n
log

2

δ

)

. (10)

Unfortunately, on the right-hand side, eq. (10) states 2/δ instead of 1/δ.

2



3 One-Sided Chernoff Bound

We can tighten the 2/δ in eq. (10) to obtain the 1/δ from theorem 2 by directly proving a one-sided bound
on the mean p.

Proof. The main ingredient of the proof of theorem 3 is the equivalence kl(X, p) ≤ c if and only if kl(p, c) ≤
X ≤ kl(p, c). Since we now desire only an upper bound on p, kl(X, p) ≤ c is stronger than we need. The key
insight is to define a one-sided version of kl:

klm(q, p) =

{

kl(q, p), q ≤ p.

0, q > p.
(11)

An upper bound on p is then equivalent to an upper bound on klm(X, p):

p ≤ kl−1

(

X

∣

∣

∣

∣

1

n
log

1

δ

)

⇐⇒ klm(X, p) ≤
1

n
log

1

δ
. (12)

To see this, note that

sup

{

p ∈ [0, 1] : kl(X, p) ≤
1

n
log

1

δ

}

= sup

{

p ∈ [0, 1] : klm(X, p) ≤
1

n
log

1

δ

}

(13)

because, in both suprema, X ≤ p always. The same approach is taken in the proof of the one-sided bound
for Bernoulli random variables in theorem 1, see the proof of Lemma 3.6 in Langford (2005).

Analogously to the proof of theorem 3, the main ingredient of this proof is the equivalence klm(X, p) ≤ c
if and only if kl(p, c) ≤ X, so we conclude by the fact that the latter holds with probability at least 1− δ:

Pr

(

klm(X, p) ≤
1

n
log

1

δ

)

= Pr

(

kl

(

p,
1

n
log

1

δ

)

≤ X

)

≥ 1− δ. (14)
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